NMR Studies of Zerovalent Metal π -Complexes of Dibenzylideneacetone. III. Conformation and Bonding of the Mononuclear Palladium and Platinum Complexes

Hisao Tanaka and Hiroshi Kawazura*

Faculty of Pharmaceutical Sciences, Josai University, Sakado, Saitama 350-02 (Received July 20, 1979)

Synopsis. ¹H-NMR spectorscopy of the $M[(C_6H_5-CH=CH)_2CO]_3$ (M=Pd,Pt) complexes revealed that the coordinated olefinic moieties are fixed in the *s-trans* form, while the uncoordinated ones are fluxional around the *s-cis* form. The fluxional behavior of the uncoordinated olefins was explained in terms of the π -back donation in the complexes.

The dibenzylideneacetone (dba) ligand provides a unique series^{1,2)} of zerovalent Pd and Pt complexes in which only the olefinic double bond participates in the bonding to the metal. As has been reported in the preceding papers,^{3,4)} the binuclear complexes, $M(dba)_3$ (M=Pd, Pt), retain a rigid structure, even in solution, where the two olefinic double bonds of dba are separately joined to the two metal atoms. However, the mononuclear complexes, $M(dba)_3$ (M=Pd, Pt), are expected to be in a more flexible form because of the existence⁵⁾ of olefinic portions free from coordination. We wish to report here on the fluxional behavior of the free olefinic portions, seen by ¹H-NMR spectroscopy, and on its correlation with the π -back bonding nature in the complexes.

Results and Discussion

Figure 1 shows the ${}^{1}H$ -NMR spectra of the compounds, $M[(C_{6}D_{5}CH=CH)_{2}CO]_{3}$ (M=Pd, Pt). Two kinds of AB quartet patterns are found in both spectra, where the high-field one and the low-field one originate from the protons of the coordinated olefin and from those of the free olefin in a given dba ligand respectively. The NMR parameters are gathered in Table 1, where δ_{A} and δ_{B} are the chemical shift of the proton on the carbonyl side (H_{A}) and that on the phenyl side (H_{B}) respectively.

As has previously been discussed, 3,4,6) the conforma-

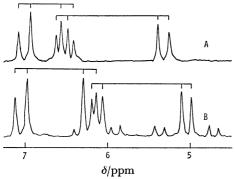


Fig. 1. ¹H-NMR spectra of Pd[($C_6D_5CH=CH$)₂CO]₃ (A) and Pt[($C_6D_5CH=CH$)₂CO]₃ (B), measured in CDCl₃ at -60 °C.

Table 1. 1 H-NMR parameters of Pd(dba) $_{3}$, Pt(dba) $_{3}$, and free dba in CDCl $_{3}$ at -60 $^{\circ}$ C

	Olefins	$\frac{J_{\mathtt{AB}}}{\mathtt{Hz}}$	$\frac{\delta_{\mathtt{A}}}{\mathrm{ppm}}$	$\frac{\delta_{\mathrm{B}}}{\mathrm{ppm}}$	$\frac{\delta_{\mathtt{AB}}}{\mathtt{ppm}}$	$rac{ar{\delta}_{ ext{H}}}{ ext{ppm}}$
Pd(dba) ₃	${\Pi_p \choose G_g}$	13.3 15.4	5.343 6.517	6.562 7.017	1.219 0.500	5.953 6.767
$Pt(dba)_3$	C_{c}	11.7 15.3	0.01.	6.153 7.076	1.078 0.819	5.614 6.666
Free dba	O	16.0	7.188	7.821	0.633	7.504

a) C; coordinated. b) U; uncoordinated. c) $J_{\text{Pt-A}}$; 65.9 and $J_{\text{Pt-B}}$; 44.3 Hz. δ_{A} and δ_{B} ; in ppm with tetramethylsilane. $\delta_{\text{AB}} = \delta_{\text{B}} - \delta_{\text{A}}$ and $\bar{\delta}_{\text{H}} = (\delta_{\text{A}} + \delta_{\text{B}})/2$.

tion of the olefinic moiety of the dba ligand can be discriminated from the magnitude of the internal shift $\delta_{AB}(=\delta_B-\delta_A)$; $\delta_{AB}\leqslant 0.4$ for the *s-cis* form and $\delta_{AB}\geqslant 1.0$ ppm for the *s-trans* form. Therefore, the coordinated olefins with δ_{AB} of 1.22 for the Pd complex and that of 1.08 ppm for the Pt complex are found to be in the *s-trans* form. On the other hand, the uncoordinated olefins have δ_{AB} 's of 0.50 and 0.82 ppm for the respective complex, comparable to that of 0.63 ppm for free dba.

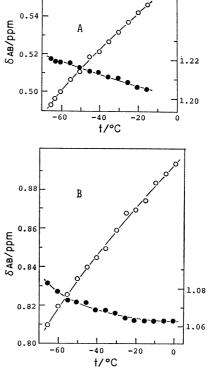


Fig. 2. Temperature dependence of the δ_{AB} for the coordinated (\bigcirc ; right ordinate) and uncoordinated olefins (\bigcirc ; left ordinate): A; Pd(dba)₃ and B; Pt(dba)₃ in CDCl₃.

In order to ascertain the detail of the ligand conformation, we have examined the temperature dependence of δ_{AB} (Fig. 2). With an increase in the temperature, the δ_{AB} 's for the coordinated olefins decrease slightly, indicating a characteristic aspect of the behavior⁴) of the fixed s-trans form,⁷) while the δ_{AB} 's for the uncoordinated olefins increase markedly, as in free dba, in which the olefins are in an equilibrium⁶) between the major s-cis and minor s-trans forms. Thus, the temperature dependence of δ_{AB} for the uncoordinated olefins was analyzed assuming the following equilibrium and thermodynamic relation:

$$\ln \frac{\delta_{\rm AB}^{\rm obsd} - \delta_{\rm AB}^{\rm t}}{\delta_{\rm AB}^{\rm c} - \delta_{\rm AB}^{\rm obsd}} = -\frac{\Delta H}{RT} + \frac{\Delta S}{R},$$

$$\delta_{\rm AB}^{\rm obsd} = c^{\rm c}\delta_{\rm AB}^{\rm c} + c^{\rm t}\delta_{\rm AB}^{\rm t} \quad (c^{\rm c} + c^{\rm t} = 1).$$

Here, δ_{AB}^c and δ_{AB}^t are the intrinsic values of δ_{AB} for the s-cis and s-trans forms. When the optimal values⁸ of ΔH and ΔS are adopted, δ_{AB}^c and δ_{AB}^t are 0.44 and 1.48 ppm for the Pd complex and 0.50 and 1.47 ppm for the Pt complex; the values are close to the corresponding values⁶ of 0.44 and 1.59 ppm for free dba. The conformer populations of the s-cis form (c°) are 0.90(-15°) and 0.94(-60°) in the Pd complex and 0.62(-15°) and 0.67(-60°C) in the Pt complex.

Thus, the dba ligands of the Pd complex might exist almost entirely in the s-cis, s-trans form, as in the crystal-line state, b while those of the Pt complex could contain an appreciable amount of the s-trans, s-trans form. The conformational difference between the two complexes can be understood in terms of the metal-olefin π -back donation. As has already been clarified by an INDO calculation of the dba molecule, the s-trans, s-trans form has a highly repulsive interaction arising mainly from the proximity of the two H_B protons, and so becomes destabilized in the free state. The coordination to the metal, however, causes a little change in the geometry of the dba molecule, such as an out-of-plane bending of the olefinic hydrogens, which diminishes the core

repulsion within the ligand and makes feasible the existence of the s-trans, s-trans form. Such a stabilization effect of s-trans, s-trans form would be more effective in the Pt complex than in the Pd complex, since the π -back donation is stronger in the Pt complex, as is confirmed⁴) by the values of the trans-olefinic coupling, J_{AB} , and the mean shift, $\bar{\delta}_{H}[=(\delta_{A}+\delta_{B})/2]$. We conclude that the π -back donation not only plays a major role in determining the bonding strength of the coordinated olefin in the zerovalent metal complex, but also determines the conformational attitude of the uncoordinated counterpart.

Experimental

The complexes, $M[(C_6D_5CH=CH)_2CO]_3$ (M=Pd,Pt), were prepared by the method of Moseley and Maitles, ¹⁰) using the dba- d_{10} . To assign δ_A and δ_B , the $M[(C_6D_5CD=CH)_2-CO]_3$ and $M[(C_6D_5CH=CD)_2CO]_3$ compounds were synthesized by a similar method. The samples were prepared at ca.-60 °C and were measured on a JEOL PFT/EC 100 spectrometer. Least-squares calculations for the analysis of δ_{AB} were performed on an IBM 1130 machine at Josai University.

References

- 1) T. Ukai, H. Kawazura, Y. Ishii, J. Bonnet, and J. A. Ibers, *J. Organomet. Chem.*, **65**, 253 (1974).
- 2) C. G. Pierpont and M. C. Mazza, *Inorg. Chem.*, 13, 1891 (1974).
- 3) H. Kawazura, H. Tanaka, K. Yamada, Y. Takahashi, and Y. Ishii, Bull. Chem. Soc. Jpn., 51, 3466 (1978).
- 4) H. Tanaka and H. Kawazura, Bull. Chem. Soc. Jpn., 52, 2815 (1979).
- 5) M. C. Mazza and C. G. Pierpont, *Inorg. Chem.*, 12, 2955 (1973).
- 6) H. Tanaka, K. Yamada, and H. Kawazura, J. Chem. Soc., Perkin Trans. 2, 1978, 231.
- 7) The framework molecular model shows the rotation about C-C(O) bond in the coordinated olefinic portion to be restricted because of a sterical hindrance among the neighbouring ligands.
- 8) ΔH =6.1 in Pd(dba)₃, 2.5 kJ mol⁻¹ in Pt(dba)₃, and ΔS =R ln2=5.76 J K⁻¹ mol⁻¹ in both complexes. For the procedure used to evaluate the thermodynamic relation, see Ref. 6.
- 9) J. H. Nelson, K. S. Wheelock, L. C. Cusachs, and H. B. Jonassen, *Inorg. Chem.*, **11**, 422 (1972).
- 10) K. Moseley and P. M. Maitlis, J. Chem. Soc., Dalton Trans., 1974, 169.